Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Microbiol Spectr ; 11(3): e0099423, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2316423

ABSTRACT

Coronaviruses (CoVs), including severe acute respiratory syndrome CoV (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV), and SARS-CoV-2, produce double-stranded RNA (dsRNA) that activates antiviral pathways such as PKR and OAS/RNase L. To successfully replicate in hosts, viruses must evade such antiviral pathways. Currently, the mechanism of how SARS-CoV-2 antagonizes dsRNA-activated antiviral pathways is unknown. In this study, we demonstrate that the SARS-CoV-2 nucleocapsid (N) protein, the most abundant viral structural protein, is capable of binding to dsRNA and phosphorylated PKR, inhibiting both the PKR and OAS/RNase L pathways. The N protein of the bat coronavirus (bat-CoV) RaTG13, the closest relative of SARS-CoV-2, has a similar ability to inhibit the human PKR and RNase L antiviral pathways. Via mutagenic analysis, we found that the C-terminal domain (CTD) of the N protein is sufficient for binding dsRNA and inhibiting RNase L activity. Interestingly, while the CTD is also sufficient for binding phosphorylated PKR, the inhibition of PKR antiviral activity requires not only the CTD but also the central linker region (LKR). Thus, our findings demonstrate that the SARS-CoV-2 N protein is capable of antagonizing the two critical antiviral pathways activated by viral dsRNA and that its inhibition of PKR activities requires more than dsRNA binding mediated by the CTD. IMPORTANCE The high transmissibility of SARS-CoV-2 is an important viral factor defining the coronavirus disease 2019 (COVID-19) pandemic. To transmit efficiently, SARS-CoV-2 must be capable of disarming the innate immune response of its host efficiently. Here, we describe that the nucleocapsid protein of SARS-CoV-2 is capable of inhibiting two critical innate antiviral pathways, PKR and OAS/RNase L. Moreover, the counterpart of the closest animal coronavirus relative of SARS-CoV-2, bat-CoV RaTG13, can also inhibit human PKR and OAS/RNase L antiviral activities. Thus, the importance of our discovery for understanding the COVID-19 pandemic is 2-fold. First, the ability of SARS-CoV-2 N to inhibit innate antiviral activity is likely a factor contributing to the transmissibility and pathogenicity of the virus. Second, the bat relative of SARS-CoV-2 has the capacity to inhibit human innate immunity, which thus likely contributed to the establishment of infection in humans. The findings described in this study are valuable for developing novel antivirals and vaccines.


Subject(s)
COVID-19 , Chiroptera , Animals , Humans , Antiviral Agents/pharmacology , SARS-CoV-2/metabolism , Nucleocapsid Proteins , Pandemics , Viral Proteins/metabolism , RNA, Double-Stranded
2.
Int J Mol Sci ; 24(4)2023 Feb 16.
Article in English | MEDLINE | ID: covidwho-2287228

ABSTRACT

Porcine epidemic diarrhea (PED) is an acute and severe atrophic enteritis caused by porcine epidemic diarrhea virus (PEDV) that infects pigs and makes huge economic losses to the global swine industry. Previously, researchers have believed that porcine aminopeptidase-N (pAPN) was the primary receptor for PEDV, but it has been found that PEDV can infect pAPN knockout pigs. Currently, the functional receptor for PEDV remains unspecified. In the present study, we performed virus overlay protein binding assay (VOPBA), found that ATP1A1 was the highest scoring protein in the mass spectrometry results, and confirmed that the CT structural domain of ATP1A1 interacts with PEDV S1. First, we investigated the effect of ATP1A1 on PEDV replication. Inhibition of hosts ATP1A1 protein expression using small interfering RNA (siRNAs) significantly reduced the cells susceptibility to PEDV. The ATP1A1-specific inhibitors Ouabain (a cardiac steroid) and PST2238 (a digitalis toxin derivative), which specifically bind ATP1A1, could block the ATP1A1 protein internalization and degradation, and consequently reduce the infection rate of host cells by PEDV significantly. Additionally, as expected, overexpression of ATP1A1 notably enhanced PEDV infection. Next, we observed that PEDV infection of target cells resulted in upregulation of ATP1A1 at the mRNA and protein levels. Furthermore, we found that the host protein ATP1A1 was involved in PEDV attachment and co-localized with PEDV S1 protein in the early stage of infection. In addition, pretreatment of IPEC-J2 and Vero-E6 cells with ATP1A1 mAb significantly reduced PEDV attachment. Our observations provided a perspective on identifying key factors in PEDV infection, and may provide valuable targets for PEDV infection, PEDV functional receptor, related pathogenesis, and the development of new antiviral drugs.


Subject(s)
Coronavirus Infections , Host-Pathogen Interactions , Porcine epidemic diarrhea virus , Sodium-Potassium-Exchanging ATPase , Swine Diseases , Animals , CD13 Antigens/metabolism , Chlorocebus aethiops , Porcine epidemic diarrhea virus/physiology , Receptors, Virus/metabolism , RNA, Double-Stranded , RNA, Small Interfering , Swine , Swine Diseases/metabolism , Vero Cells , Virus Attachment , Coronavirus Infections/metabolism , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Sodium-Potassium-Exchanging ATPase/metabolism
3.
Int J Mol Sci ; 24(6)2023 Mar 17.
Article in English | MEDLINE | ID: covidwho-2269538

ABSTRACT

The nucleocapsid protein Np of SARS-CoV-2 is involved in the replication, transcription, and packaging of the viral genome, but it also plays a role in the modulation of the host cell innate immunity and inflammation response. Ectopic expression of Np alone was able to induce significant changes in the proteome of human cells. The cellular RNA helicase DDX1 was among the proteins whose levels were increased by Np expression. DDX1 and its related helicase DDX3X were found to physically interact with Np and to increase 2- to 4-fold its affinity for double-stranded RNA in a helicase-independent manner. Conversely, Np inhibited the RNA helicase activity of both proteins. These functional interactions among Np and DDX1 and DDX3X highlight novel possible roles played by these host RNA helicases in the viral life cycle.


Subject(s)
COVID-19 , RNA Helicases , Humans , RNA, Double-Stranded , SARS-CoV-2 , Nucleocapsid Proteins , DEAD-box RNA Helicases/genetics
4.
APMIS ; 131(5): 197-205, 2023 May.
Article in English | MEDLINE | ID: covidwho-2245757

ABSTRACT

Double-stranded RNA (dsRNA) is produced during most viral infections, and immunohistochemical detection of dsRNA has been proposed as a potential screening marker for viral replication. The anti-dsRNA monoclonal antibody clone 9D5 is more sensitive than the established clone J2 but has not been validated in formalin-fixed paraffin-embedded (FFPE) tissue. This study aimed to test and compare the performance of the anti-dsRNA monoclonal antibodies, 9D5 and J2, in FFPE tissue using an automated staining platform. Archived clinical tissue samples with viral infections (n = 34) and uninfected controls (n = 30) were examined. Immunohistochemical staining for dsRNA (9D5 and J2) and virus-specific epitopes was performed. 9D5 provided a similar staining pattern but a higher signal-to-noise ratio than J2. The following proportions of virus-infected tissue samples were dsRNA-positive: SARS-CoV-2 (5/5), HPV (6/6), MCV (5/5), CMV (5/6), HSV (4/6), and EBV (0/6). Also, 18 of 30 uninfected samples were dsRNA positive, and an association between fixation time and intensity was observed. However, signals in all samples were markedly reduced by pretreatment with dsRNA-specific RNAse-III, indicating a specific reaction. In conclusion, dsRNA can be demonstrated in most viral infections with immunohistochemistry in FFPE tissue but with low clinical specificity. The antibody clone 9D5 performs better than clone J2.


Subject(s)
COVID-19 , Virus Diseases , Humans , RNA, Double-Stranded , Paraffin Embedding , SARS-CoV-2 , Formaldehyde
5.
Sci Rep ; 12(1): 21779, 2022 12 16.
Article in English | MEDLINE | ID: covidwho-2186033

ABSTRACT

Elevated serum cytokine production in COVID-19 patients is associated with disease progression and severity. However, the stimuli that initiate cytokine production in patients remain to be fully revealed. Virus-infected cells release virus-associated exosomes, extracellular vesicles of endocytic origin, into the blood to deliver viral cargoes able to regulate immune responses. Here, we report that plasma exosomes of COVID-19 patients contain SARS-CoV-2 double stranded RNA (dsRNA) and stimulate robust production of interleukin-6 (IL-6), IL-8, tumor necrosis factor-α (TNF-α), and other inflammatory cytokines and chemokines by human peripheral mononuclear cells. Exosome depletion abolished these stimulated responses. COVID-19 plasma exosomes induced proinflammatory responses in CD4+ T cells, CD8+ T cells, and CD14+ monocytes but not significantly in regulatory T cells, Th17 T cells, or central memory T cells. COVID-19 plasma exosomes protect the SARS-CoV-2 dsRNA cargo from RNase and deliver the dsRNA into recipient cells. These exosomes significantly increase expression of endosomal toll-like receptor 3 (TLR3), TLR7, TLR8, and TLR9 in peripheral T cells and monocytes. A pharmacological inhibitor of TLR3 considerably reduced cytokine and chemokine production by CD4+ and CD8+ T cells but not by CD14+ monocytes, highlighting divergent signaling pathways of immune cells in response to COVID-19 plasma exosomes. Our results identify a novel model of intercellular crosstalk following SARS-CoV-2 infection that evoke immune responses positioned to contribute to elevated cytokine production associated with COVID-19 progression, severity, and long-haul symptoms.


Subject(s)
COVID-19 , Exosomes , Humans , Exosomes/metabolism , Toll-Like Receptor 3/metabolism , Leukocytes, Mononuclear/metabolism , CD8-Positive T-Lymphocytes/metabolism , SARS-CoV-2/metabolism , COVID-19/metabolism , Cytokines/metabolism , RNA, Double-Stranded/metabolism , Immunity
6.
Cell Rep ; 42(1): 112038, 2023 01 31.
Article in English | MEDLINE | ID: covidwho-2177166

ABSTRACT

Under normal homeostatic conditions, self-double-stranded RNA (self-dsRNA) is modified by adenosine deaminase acting on RNA 1 (ADAR1) to prevent the induction of a type I interferon-mediated inflammatory cascade. Antigen-presenting cells (APCs) sense pathogen-associated molecular patterns, such as dsRNA, to activate the immune response. The impact of ADAR1 on the function of APCs and the consequences to immunity are poorly understood. Here, we show that ADAR1 deletion in CD11c+ APCs leads to (1) a skewed myeloid cell compartment enriched in inflammatory cDC2-like cells, (2) enhanced numbers of activated tissue resident memory T cells in the lung, and (3) the imprinting of a broad antiviral transcriptional signature across both immune and non-immune cells. The resulting changes can be partially reversed by blocking IFNAR1 signaling and promote early resistance against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Our study provides insight into the consequences of self-dsRNA sensing in APCs on the immune system.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Antiviral Agents , RNA, Double-Stranded , Myeloid Cells/metabolism , Lung/metabolism , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism
7.
Science ; 379(6632): eabo3627, 2023 02 10.
Article in English | MEDLINE | ID: covidwho-2193402

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) is a rare and severe condition that follows benign COVID-19. We report autosomal recessive deficiencies of OAS1, OAS2, or RNASEL in five unrelated children with MIS-C. The cytosolic double-stranded RNA (dsRNA)-sensing OAS1 and OAS2 generate 2'-5'-linked oligoadenylates (2-5A) that activate the single-stranded RNA-degrading ribonuclease L (RNase L). Monocytic cell lines and primary myeloid cells with OAS1, OAS2, or RNase L deficiencies produce excessive amounts of inflammatory cytokines upon dsRNA or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stimulation. Exogenous 2-5A suppresses cytokine production in OAS1-deficient but not RNase L-deficient cells. Cytokine production in RNase L-deficient cells is impaired by MDA5 or RIG-I deficiency and abolished by mitochondrial antiviral-signaling protein (MAVS) deficiency. Recessive OAS-RNase L deficiencies in these patients unleash the production of SARS-CoV-2-triggered, MAVS-mediated inflammatory cytokines by mononuclear phagocytes, thereby underlying MIS-C.


Subject(s)
COVID-19 , Cytokines , Endoribonucleases , SARS-CoV-2 , Systemic Inflammatory Response Syndrome , Child , Humans , COVID-19/immunology , Cytokines/genetics , Cytokines/immunology , Endoribonucleases/genetics , Endoribonucleases/metabolism , RNA, Double-Stranded , SARS-CoV-2/genetics , Systemic Inflammatory Response Syndrome/genetics
8.
J Immunol ; 210(3): 335-347, 2023 02 01.
Article in English | MEDLINE | ID: covidwho-2201460

ABSTRACT

Melanoma differentiation-associated gene 5 (MDA5), a member of the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), has pivotal roles in innate immune responses against many positive-stranded RNA viruses, including picornavirus and coronavirus. Upon engagement with dsRNA derived from viral infection, MDA5 initiates coordinated signal transduction leading to type I IFN induction to restrict viral replication. In this study, we describe a targeted cleavage events of MDA5 by the 3C protease from Theilovirus. Upon ectopic expression of theilovirus 3C protease from Saffold virus or Theiler's murine encephalomyelitis virus but not encephalomyocarditis virus, fragments of cleaved MDA5 were observed in a dose-dependent manner. When enzymatically inactive Theilovirus 3C protease was expressed, MDA5 cleavage was completely abrogated. Mass spectrometric analysis identified two cleavage sites at the C terminus of MDA5, cleaving off one of the RNA-binding domains. The same cleavage pattern was observed during Theilovirus infection. The cleavage of MDA5 by Theilovirus protease impaired ATP hydrolysis, RNA binding, and filament assembly on RNA, resulting in dysfunction of MDA5 as an innate immune RNA sensor for IFN induction. Furthermore, the cleavage-resistant MDA5 mutant against the 3C protease showed an enhanced IFN response during Saffold virus infection, indicating that Theilovirus has a strategy to circumvent the antiviral immune response by cleaving MDA5 using 3C protease. In summary, these data suggest MDA5 cleavage by 3C protease as a novel immune evasive strategy of Theilovirus.


Subject(s)
Interferon-Induced Helicase, IFIH1 , RNA, Double-Stranded , Theilovirus , Animals , Mice , Cysteine Endopeptidases/genetics , Host-Pathogen Interactions , Immunity, Innate , Interferon Type I/metabolism , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/metabolism , Peptide Hydrolases/metabolism , RNA, Double-Stranded/immunology , RNA, Double-Stranded/metabolism
9.
Wiley Interdiscip Rev RNA ; 14(4): e1770, 2023.
Article in English | MEDLINE | ID: covidwho-2148489

ABSTRACT

In response to viral infection, mammalian cells activate several innate immune pathways to antagonize viral gene expression. Upon recognition of viral double-stranded RNA, protein kinase R (PKR) phosphorylates the alpha subunit of eukaryotic initiation factor 2 (eIF2α) on serine 51. This inhibits canonical translation initiation, which broadly antagonizes viral protein synthesis. It also promotes the assembly of cytoplasmic ribonucleoprotein complexes termed stress granules (SGs). SGs are widely thought to promote cell survival and antiviral signaling. However, co-activation of the OAS/RNase L antiviral pathway inhibits the assembly of SGs and promotes the assembly of an alternative ribonucleoprotein complex termed an RNase L-dependent body (RLB). The formation of RLBs has been observed in response to double-stranded RNA, dengue virus infection, or SARS-CoV-2 infection. Herein, we review the distinct biogenesis pathways and properties of SGs and RLBs, and we provide perspective on their potential functions during the antiviral response. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Turnover and Surveillance > Regulation of RNA Stability RNA Export and Localization > RNA Localization.


Subject(s)
COVID-19 , Ribonucleoproteins , Animals , Humans , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , RNA, Double-Stranded , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Antiviral Agents , Mammals/genetics , Mammals/metabolism
10.
Viruses ; 14(10)2022 09 30.
Article in English | MEDLINE | ID: covidwho-2143661

ABSTRACT

Interferon gamma (IFN-γ) may be potential adjuvant immunotherapy for COVID-19 patients. In this work, we assessed gene expression profiles associated with the IFN-γ pathway in response to SARS-CoV-2 infection. Employing a case-control study from SARS-CoV-2-positive and -negative patients, we identified IFN-γ-associated pathways to be enriched in positive patients. Bioinformatics analyses showed upregulation of MAP2K6, CBL, RUNX3, STAT1, and JAK2 in COVID-19-positive vs. -negative patients. A positive correlation was observed between STAT1/JAK2, which varied alongside the patient's viral load. Expression of MX1, MX2, ISG15, and OAS1 (four well-known IFN-stimulated genes (ISGs)) displayed upregulation in COVID-19-positive vs. -negative patients. Integrative analyses showcased higher levels of ISGs, which were associated with increased viral load and STAT1/JAK2 expression. Confirmation of ISGs up-regulation was performed in vitro using the A549 lung cell line treated with Poly (I:C), a synthetic analog of viral double-stranded RNA; and in different pulmonary human cell lines and ferret tracheal biopsies infected with SARS-CoV-2. A pre-clinical murine model of Coronavirus infection confirmed findings displaying increased ISGs in the liver and lungs from infected mice. Altogether, these results demonstrate the role of IFN-γ and ISGs in response to SARS-CoV-2 infection, highlighting alternative druggable targets that can boost the host response.


Subject(s)
COVID-19 , Humans , Animals , Mice , Interferon-gamma/genetics , SARS-CoV-2 , Case-Control Studies , RNA, Double-Stranded , Ferrets , MAP Kinase Kinase 6/genetics
11.
Viruses ; 14(12)2022 12 03.
Article in English | MEDLINE | ID: covidwho-2143731

ABSTRACT

Positive-strand RNA virus RNA genome replication occurs in membrane-associated RNA replication complexes (RCs). Nodavirus RCs are outer mitochondrial membrane invaginations whose necked openings to the cytosol are "crowned" by a 12-fold symmetrical proteinaceous ring that functions as the main engine of RNA replication. Similar protein crowns recently visualized at the openings of alphavirus and coronavirus RCs highlight their broad conservation and functional importance. Using cryo-EM tomography, we earlier showed that the major nodavirus crown constituent is viral protein A, whose polymerase, RNA capping, membrane interaction and multimerization domains drive RC formation and function. Other viral proteins are strong candidates for unassigned EM density in the crown. RNA-binding RNAi inhibitor protein B2 co-immunoprecipitates with protein A and could form crown subdomains that protect nascent viral RNA and dsRNA templates. Capsid protein may interact with the crown since nodavirus virion assembly has spatial and other links to RNA replication. Using cryoelectron tomography and complementary approaches, we show that, even when formed in mammalian cells, nodavirus RC crowns generated without B2 and capsid proteins are functional and structurally indistinguishable from mature crowns in infected Drosophila cells expressing all viral proteins. Thus, the only nodaviral factors essential to form functional RCs and crowns are RNA replication protein A and an RNA template. We also resolve apparent conflicts in prior results on B2 localization in infected cells, revealing at least two distinguishable pools of B2. The results have significant implications for crown structure, assembly, function and control as an antiviral target.


Subject(s)
RNA Replication , Viral Proteins , Animals , Viral Proteins/genetics , Virus Replication , Virus Assembly , Capsid Proteins/genetics , Drosophila/genetics , RNA, Double-Stranded , RNA, Viral/genetics , RNA, Viral/metabolism , Mammals
12.
Front Immunol ; 13: 956794, 2022.
Article in English | MEDLINE | ID: covidwho-2032775

ABSTRACT

DEAD-box RNA helicase 21 (DDX21), also known as RHII/Gu, is an ATP-dependent RNA helicase. In addition to playing a vital role in regulating cellular RNA splicing, transcription, and translation, accumulated evidence has suggested that DDX21 is also involved in the regulation of innate immunity. However, whether DDX21 induces or antagonizes type I interferon (IFN-I) production has not been clear and most studies have been performed through ectopic overexpression or RNA interference-mediated knockdown. In this study, we generated DDX21 knockout cell lines and found that knockout of DDX21 enhanced Sendai virus (SeV)-induced IFN-ß production and IFN-stimulated gene (ISG) expression, suggesting that DDX21 is a negative regulator of IFN-ß. Mechanistically, DDX21 competes with retinoic acid-inducible gene I (RIG-I) for binding to double-stranded RNA (dsRNA), thereby attenuating RIG-I-mediated IFN-ß production. We also identified that the 217-784 amino acid region of DDX21 is essential for binding dsRNA and associated with its ability to antagonize IFN production. Taken together, our results clearly demonstrated that DDX21 negatively regulates IFN-ß production and functions to maintain immune homeostasis.


Subject(s)
Interferon-beta , RNA, Double-Stranded , DEAD-box RNA Helicases , Immunity, Innate , Sendai virus
13.
Nucleic Acids Res ; 50(14): 8168-8192, 2022 08 12.
Article in English | MEDLINE | ID: covidwho-1961119

ABSTRACT

Nucleocapsid protein (N-protein) is required for multiple steps in betacoronaviruses replication. SARS-CoV-2-N-protein condenses with specific viral RNAs at particular temperatures making it a powerful model for deciphering RNA sequence specificity in condensates. We identify two separate and distinct double-stranded, RNA motifs (dsRNA stickers) that promote N-protein condensation. These dsRNA stickers are separately recognized by N-protein's two RNA binding domains (RBDs). RBD1 prefers structured RNA with sequences like the transcription-regulatory sequence (TRS). RBD2 prefers long stretches of dsRNA, independent of sequence. Thus, the two N-protein RBDs interact with distinct dsRNA stickers, and these interactions impart specific droplet physical properties that could support varied viral functions. Specifically, we find that addition of dsRNA lowers the condensation temperature dependent on RBD2 interactions and tunes translational repression. In contrast RBD1 sites are sequences critical for sub-genomic (sg) RNA generation and promote gRNA compression. The density of RBD1 binding motifs in proximity to TRS-L/B sequences is associated with levels of sub-genomic RNA generation. The switch to packaging is likely mediated by RBD1 interactions which generate particles that recapitulate the packaging unit of the virion. Thus, SARS-CoV-2 can achieve biochemical complexity, performing multiple functions in the same cytoplasm, with minimal protein components based on utilizing multiple distinct RNA motifs that control N-protein interactions.


Subject(s)
Coronavirus Nucleocapsid Proteins , RNA, Double-Stranded , SARS-CoV-2 , Binding Sites , Coronavirus Nucleocapsid Proteins/chemistry , Phosphoproteins/chemistry , RNA, Double-Stranded/genetics , RNA, Viral/genetics , RNA-Binding Proteins/metabolism , SARS-CoV-2/genetics , Temperature
14.
Biochem Cell Biol ; 100(4): 338-348, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-1932794

ABSTRACT

Bovine lactoferrin (bLF) is a naturally occurring glycoprotein with antibacterial and antiviral activities. We evaluated whether bLF can prevent viral infections in the human intestinal epithelial cell line Caco-2. To assess antiviral responses, we measured the levels of interferon (IFN) expression, IFN-stimulated gene expression, and infection with a pseudotyped virus bearing either severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein or vesicular stomatitis virus (VSV)-G protein after treatment of cells with both bLF and polyinosinic-polycytidylic acid, an analog of double-stranded RNA that mimics viral infection. Combination treatment of cells with both bLF and polyinosinic-polycytidylic acid increased mRNA and protein expression of several IFN genes (IFNB, IFNL1, and IFNL2) and IFN-stimulated genes (ISG15, MX1, IFITM1, and IFITM3) in Caco-2 cells. However, treatment with bLF alone did not induce an antiviral response. Furthermore, combination treatment suppressed infection of the SARS-CoV-2 pseudotyped virus more efficiently than did bLF treatment alone, even though combination treatment increased the expression of mRNA encoding ACE2. These results indicate that bLF increases the antiviral response associated with the double-stranded RNA-stimulated signaling pathway. Our results also suggest that bLF and double-stranded RNA analogs can be used to treat viral infections, including those caused by SARS-CoV-2.


Subject(s)
COVID-19 , Lactoferrin , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Caco-2 Cells , Humans , Lactoferrin/metabolism , Membrane Proteins/metabolism , Poly I-C , RNA, Double-Stranded , RNA, Messenger/genetics , RNA-Binding Proteins/metabolism , SARS-CoV-2
15.
Nucleic Acids Res ; 50(14): 8290-8301, 2022 08 12.
Article in English | MEDLINE | ID: covidwho-1931874

ABSTRACT

Coronaviruses generate double-stranded (ds) RNA intermediates during viral replication that can activate host immune sensors. To evade activation of the host pattern recognition receptor MDA5, coronaviruses employ Nsp15, which is a uridine-specific endoribonuclease. Nsp15 is proposed to associate with the coronavirus replication-transcription complex within double-membrane vesicles to cleave these dsRNA intermediates. How Nsp15 recognizes and processes dsRNA is poorly understood because previous structural studies of Nsp15 have been limited to small single-stranded (ss) RNA substrates. Here we present cryo-EM structures of SARS-CoV-2 Nsp15 bound to a 52nt dsRNA. We observed that the Nsp15 hexamer forms a platform for engaging dsRNA across multiple protomers. The structures, along with site-directed mutagenesis and RNA cleavage assays revealed critical insight into dsRNA recognition and processing. To process dsRNA Nsp15 utilizes a base-flipping mechanism to properly orient the uridine within the active site for cleavage. Our findings show that Nsp15 is a distinctive endoribonuclease that can cleave both ss- and dsRNA effectively.


Subject(s)
COVID-19 , Endoribonucleases , Endoribonucleases/metabolism , Humans , RNA, Double-Stranded/genetics , SARS-CoV-2/genetics , Uridine , Viral Nonstructural Proteins/metabolism
16.
Viruses ; 14(7)2022 06 28.
Article in English | MEDLINE | ID: covidwho-1911660

ABSTRACT

Pathogen-associated molecular patterns, including cytoplasmic DNA and double-strand (ds)RNA trigger the induction of interferon (IFN) and antiviral states protecting cells and organisms from pathogens. Here we discovered that the transfection of human airway cell lines or non-transformed fibroblasts with 24mer dsRNA mimicking the cellular micro-RNA (miR)29b-1* gives strong anti-viral effects against human adenovirus type 5 (AdV-C5), influenza A virus X31 (H3N2), and SARS-CoV-2. These anti-viral effects required blunt-end complementary RNA strands and were not elicited by corresponding single-strand RNAs. dsRNA miR-29b-1* but not randomized miR-29b-1* mimics induced IFN-stimulated gene expression, and downregulated cell adhesion and cell cycle genes, as indicated by transcriptomics and IFN-I responsive Mx1-promoter activity assays. The inhibition of AdV-C5 infection with miR-29b-1* mimic depended on the IFN-alpha receptor 2 (IFNAR2) and the RNA-helicase retinoic acid-inducible gene I (RIG-I) but not cytoplasmic RNA sensors MDA5 and ZNFX1 or MyD88/TRIF adaptors. The antiviral effects of miR29b-1* were independent of a central AUAU-motif inducing dsRNA bending, as mimics with disrupted AUAU-motif were anti-viral in normal but not RIG-I knock-out (KO) or IFNAR2-KO cells. The screening of a library of scrambled short dsRNA sequences identified also anti-viral mimics functioning independently of RIG-I and IFNAR2, thus exemplifying the diverse anti-viral mechanisms of short blunt-end dsRNAs.


Subject(s)
COVID-19 , Interferon Type I , MicroRNAs , Antiviral Agents/pharmacology , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , DEAD-box RNA Helicases/genetics , Humans , Influenza A Virus, H3N2 Subtype/genetics , Interferon Type I/genetics , RNA, Double-Stranded , SARS-CoV-2
17.
J Reprod Immunol ; 151: 103635, 2022 06.
Article in English | MEDLINE | ID: covidwho-1885957

ABSTRACT

The reproductive system can be infected by a variety of double-stranded RNA viruses, which disrupt ovary function and pregnancy. However, whether viral infection directly affects early embryonic development remains unknown. Here we show that Poly(I:C), which mimics a double-stranded RNA virus, significantly impaired mouse early embryonic development in vitro, and up-regulated TLR3 and IFNα at the two cells embryo stage. Further studies indicated that Poly(I:C)-treatment caused DNA damage and abnormal spindle morphology at the first cleavage. Moreover, CDX2 and SOX2 expression was decreased while blastocyst cell apoptosis was increased. Altogether, Poly(I:C) decreased the rate of successful in vitro fertilization via DNA damage and abnormal spindle morphology at the first cleavage and inhibited early embryonic development by inducing immune response and promoting blastocyst cell apoptosis. This study provides an implication for exploring the causes of reproductive disorders in mammals and humans caused by infection of double-stranded RNA virus.


Subject(s)
Embryonic Development , RNA, Double-Stranded , Animals , Blastocyst , DNA Damage , Female , Fertilization in Vitro , Humans , Mammals/genetics , Mice , Pregnancy
18.
Trends Biochem Sci ; 47(11): 978-988, 2022 11.
Article in English | MEDLINE | ID: covidwho-1866217

ABSTRACT

The antiviral defense directed by the RNAi pathway employs distinct specificity and effector mechanisms compared with other immune responses. The specificity of antiviral RNAi is programmed by siRNAs processed from virus-derived double-stranded RNA by Dicer endonuclease. Argonaute-containing RNA-induced silencing complex loaded with the viral siRNAs acts as the effector to mediate specific virus clearance by RNAi. Recent studies have provided evidence for the production and antiviral function of virus-derived siRNAs in both undifferentiated and differentiated mammalian cells infected with a range of RNA viruses when the cognate virus-encoded suppressor of RNAi (VSR) is rendered nonfunctional. In this review, we discuss the function, mechanism, and evolutionary origin of the validated mammalian VSRs and cell culture assays for their identification.


Subject(s)
Argonaute Proteins , RNA, Double-Stranded , Animals , Antiviral Agents , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Mammals/genetics , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA, Viral/genetics
19.
J Virol ; 96(12): e0068622, 2022 06 22.
Article in English | MEDLINE | ID: covidwho-1874505

ABSTRACT

Infectious bronchitis virus (IBV), a γ-coronavirus, causes the economically important poultry disease infectious bronchitis. Cellular stress response is an effective antiviral strategy that leads to stress granule (SG) formation. Previous studies suggested that SGs were involved in the antiviral activity of host cells to limit viral propagation. Here, we aimed to delineate the molecular mechanisms regulating the SG response to pathogenic IBV strain infection. We found that most chicken embryo kidney (CEK) cells formed no SGs during IBV infection and IBV replication inhibited arsenite-induced SG formation. This inhibition was not caused by changes in the integrity or abundance of SG proteins during infection. IBV nonstructural protein 15 (Nsp15) endoribonuclease activity suppressed SG formation. Regardless of whether Nsp15 was expressed alone, with recombinant viral infection with Newcastle disease virus as a vector, or with EndoU-deficient IBV, the Nsp15 endoribonuclease activity was the main factor inhibiting SG formation. Importantly, uridine-specific endoribonuclease (EndoU)-deficient IBV infection induced colocalization of IBV N protein/dsRNA and SG-associated protein TIA1 in infected cells. Additionally, overexpressing TIA1 in CEK cells suppressed IBV replication and may be a potential antiviral factor for impairing viral replication. These data provide a novel foundation for future investigations of the mechanisms by which coronavirus endoribonuclease activity affects viral replication. IMPORTANCE Endoribonuclease is conserved in coronaviruses and affects viral replication and pathogenicity. Infectious bronchitis virus (IBV), a γ-coronavirus, infects respiratory, renal, and reproductive systems, causing millions of dollars in lost revenue to the poultry industry worldwide annually. Mutating the viral endoribonuclease poly(U) resulted in SG formation, and TIA1 protein colocalized with the viral N protein and dsRNA, thus damaging IBV replication. These results suggest a new antiviral target design strategy for coronaviruses.


Subject(s)
Coronavirus Infections , Endoribonucleases , Infectious bronchitis virus , Stress Granules , Virus Replication , Animals , Antiviral Agents/pharmacology , Chick Embryo , Chickens , Coronavirus Infections/veterinary , Endoribonucleases/genetics , Infectious bronchitis virus/enzymology , Infectious bronchitis virus/physiology , Poultry Diseases/virology , RNA, Double-Stranded
20.
Front Immunol ; 13: 859749, 2022.
Article in English | MEDLINE | ID: covidwho-1862606

ABSTRACT

In invertebrate cells, RNA interference (RNAi) acts as a powerful immune defense that stimulates viral gene knockdown thereby preventing infection. With this pathway, virally produced long dsRNA (dsRNA) is cleaved into short interfering RNA (siRNA) by Dicer and loaded into the RNA-induced silencing complex (RISC) which can then destroy/disrupt complementary viral mRNA sequences. Comparatively, in mammalian cells it is believed that the type I interferon (IFN) pathway is the cornerstone of the innate antiviral response. In these cells, dsRNA acts as a potent inducer of the IFN system, which is dependent on dsRNA length, but not sequence, to stimulate an antiviral state. Although the cellular machinery for RNAi is intact and functioning in mammalian cells, its role to trigger an antiviral response using long dsRNA (dsRNAi) remains controversial. Here we show that dsRNAi is not only functional but has a significant antiviral effect in IFN competent mammalian cells. We found that pre-soaking mammalian cells with concentrations of sequence specific dsRNA too low to induce IFN production could significantly inhibit vesicular stomatitis virus expressing green fluorescent protein (VSV-GFP), and the human coronaviruses (CoV) HCoV-229E and SARS-CoV-2 replication. This phenomenon was shown to be dependent on dsRNA length, was comparable in effect to transfected siRNAs, and could knockdown multiple sequences at once. Additionally, knockout cell lines revealed that functional Dicer was required for viral inhibition, revealing that the RNAi pathway was indeed responsible. These results provide the first evidence that soaking with gene-specific long dsRNA can generate viral knockdown in mammalian cells. We believe that this novel discovery provides an explanation as to why the mammalian lineage retained its RNAi machinery and why vertebrate viruses have evolved methods to suppress RNAi. Furthermore, demonstrating RNAi below the threshold of IFN induction has uses as a novel therapeutic platform, both antiviral and gene targeting in nature.


Subject(s)
COVID-19 , Interferon Type I , Animals , Antiviral Agents/pharmacology , Humans , Interferon Type I/metabolism , Mammals/genetics , RNA Interference , RNA, Double-Stranded , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL